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Abstract 
We discuss a collection of techniques, included in our INSEE simulation environment but 
applicable to other contexts, designed to do simulation-based performance studies of parallel 
computing systems using traces. We explain the mechanisms required to capture traces from 
MPI-based parallel applications, point out some important limitations in the way events are 
captured and stored in the trace files (namely, lack of accuracy in timing information and 
invisibility of message interchanges in collective operations), and explain the way we circumvent 
some of those limitations. After that, we describe in detail the way traces are processed in order 
to fully comply with application semantics, with particular attention to the order in which events 
are processed to avoid violations of message causality, and also how this mechanism can be 
extended to carry out performance predictions for different compute nodes or networks. To 
illustrate the usefulness of these techniques, INSEE is used to carry out two simple, example 
studies using traces from actual applications. 
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1 Introduction 
Simulation is one of the most widely used tools for performance evaluation of computing 
systems, including parallel computers. A simulation-based study requires a model of the system 
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being evaluated (which may have very different levels of accuracy) and also a mechanism to 
supply a representative workload. 
 
In the field of interconnection networks, in which we place this paper, many simulation-based 
studies use synthetic traffic patterns, such as random uniform traffic or permutations of interest, 
to feed the simulator. This kind of synthetic workload is of great interest because it is easy to 
implement, sometimes it may support analytical studies, and may be representative of the ways 
applications use the network. However, a comprehensive evaluation requires actual workloads, 
because otherwise important aspects of parallel applications cannot be understood in detail. For 
example, many applications pass through different phases, in which the ways of using the 
network differ widely; pressure on the network may be very intense in some phases, but the 
inter-dependencies amongst processes may lower the utilization of the interconnection 
infrastructure in some others.  
 
Actual traffic may be generated using an execution-driven environment, in which applications 
run on real (or simulated) processors and are connected to a simulated interconnection network. 
This set-up provides very high levels of evaluation accuracy, but cannot be easily scaled to 
thousands of processors. It may also fail, victim of unexpected interactions between components, 
as shown in [ 17,  25]. For this reason, a frequently used alternative is the utilization of traces of 
parallel applications.  
 
We can obtain traces of large systems, even using small ones. For example, a cluster of 10 PCs 
can be used to generate a trace of a parallel application running on 200 nodes—we only need to 
run twenty processes per available computer. Timing information would not be representative of 
a real, 200-CPU computer; however, the (spatial) patterns defined by the sequence of 
interchanged packets are valid, and the distribution of packet sizes is valid too. 
 
In this paper we discuss the mechanisms included in INSEE [ 24], an in-house developed 
simulation environment for the evaluation of interconnection networks, to perform simulation-
based performance studies of parallel computing systems. INSEE is able to accept many kinds of 
workloads for the simulation (from synthetically generated messages to full system simulation), 
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but we will focus on the utilization of traces. We explain the mechanisms required to capture 
traces from MPI-based parallel applications, point out some important limitations in the way 
events are captured and stored in the trace files, and explain the way we circumvent some of 
those limitations. After that, we describe in detail the way traces are processed in order to fully 
comply with application semantics, with particular attention to the order in which events are 
processed to avoid violations of message causality. A simple extension of the trace processing 
mechanism allows us to carry out performance prediction studies. Finally, we put INSEE to work 
and include two simple, example studies carried out with traces from actual applications.  
 
The rest of this paper is organized as follows. Section  2 introduce INSEE, with focus on its 
utilization with traces. Section  3 describes how traces are obtained. Sections  4 and  5 discuss the 
mechanisms used by our simulator to process traces, preserving application semantics. In  6 we 
use INSEE to make two performance-related studies. Section  7 reviews some related work. 
Conclusions of the paper are summarized in Section  8. 

2 Evaluation of networks using simulation: INSEE 
In this section we briefly introduce INSEE [ 24], the Interconnection Network Simulation and 
Evaluation Environment developed at the University of the Basque Country. The two main 
elements of INSEE are FSIN, a Functional Simulator of Interconnection Networks, and TrGen, a 
Traffic Generator [ 23].  
 
FSIN has been designed to provide a fast simulation engine for interconnection networks, both 
direct (meshes and tori) and multistage (trees, including fat-trees), with different architectural 
characteristics. Its small footprint allows us to simulate, on an off-the-shelf desktop computer, 
large size networks: we have carried out experiments with 64K-node networks using less than 2 
GB of RAM. In the case of direct networks, each node represents a router attached to a 
computing element which, in fact, is the source (and sink) of the traffic managed by the network. 
In the case of trees, computing elements are attached to switches at the lowest level, using 
interface cards. 
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The management of workloads is carried out by TrGen. A workload is a collection of messages 
that are generated by computing elements (actually, by message sources), then packetized and 
passed to FSIN (which simulates the way they traverse the interconnection network), then 
reassembled and, finally, delivered to the computing elements (actually, to the message sinks). 
When generating a workload, we have to define 
 

- The spatial distribution of messages: source nodes and destination nodes. 
- The size distribution of the messages. These come in many sizes, depending on the 

application. 
- The temporal distribution of the generation of messages. In some cases, workload 

generators simply generate random numbers (following a certain distribution) that 
determine the inter-generation intervals. In some others traffic is reactive, meaning that 
there are causal relationships between them: the arrival of a message to a certain 
destination node causes the generation of a new message from that node. 

 
Very simple synthetic workloads use statistical distributions to generate destinations, sizes and 
inter-generation times. A special class of this traffic is what we call application-inspired traffic 
[ 18], for which we emulate the behavior of some kernels of scientific applications, including 
causality. It is important to point out that simulations using traces, and full system simulation, 
use spatial, size and temporal distributions exactly as defined by the application that was 
instrumented, or that is being executed. When performing full system simulations, an external 
toolset based on Simics [ 11] fully simulates a collection of computing nodes (including 
hardware, drivers, operating system, message passing library, and running application) attached 
to an interconnection network, which is simulated by FSIN [ 17]. To perform trace based 
simulation, we use traces obtained using the mechanisms provided by MPI implementations, 
although some modifications to these are required in order to get extended trace files, because 
FSIN only deals with point-to-point operations. An extended trace file includes the detailed 
message passing involved in collective operations, something that is not visible in regular trace 
files.  
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We stated before that FSIN allows the simulation of very large networks. Unfortunately, this can 
be done only with synthetic traffic. The trace capturing environment, or the ability to fully 
simulate collections of computers, limits the node count for the other traffic generation 
arrangements. At any rate, the focus of this work is on trace based simulation.  
 
In the following sections we will explain the way INSEE deals with traces, from the mechanism 
used to capture them, to the way they are consumed by the simulator. We will explain how traces 
can be used not only for performance evaluation but also for performance prediction.  

3 Generation of traces from MPI applications 
MPICH [ 9] is one of the most widely used implementations of the Message Passing Interface 
(MPI) [ 13], a standard programming interface for parallel applications based on processes that 
communicate and synchronize explicitly, interchanging messages. The MPI standard defines a 
profiling mechanism called PMPI (“P” from Profiling) that allows programmers to intercept all 
calls to MPI functions. This mechanism is often used to implement libraries to generate traces of 
applications, or to obtain profiling information. 

3.1 Generating trace files with MPE 

The MPICH distribution includes MPE (Multi-Processing Environment) [ 10], a set of libraries 
and tools to generate and analyze traces of parallel applications. The tracing ability is based on 
PMPI, so MPE can be used with any MPI implementation, not only with MPICH. However, in 
our discussion we will only consider the MPICH/MPE tandem. To trace-enable an application, 
we just need to compile it using the compiler wrappers offered by MPICH (mpicc, mpicxx, 
mpif77, mpif90) with the “-mpilog” flag activated – no change in the source code is required.  
 
Trace-enabled applications run as normal but, when finished, write a trace file that consists of a 
set of time-stamped records (events) that describe the dynamic behavior of the application during 
its execution. Records in a trace file include: 
 

- Information of MPI functions invoked by the application processes. Each function 
invocation generates two records: one when a process calls the function and another one 
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when the function returns. A pair of these records represents a “state”: the first one 
indicates when the process enters in a given state, the second when the process exits from 
it. States are defined in a process-by-process basis. There are no “global” states. The most 
relevant fields of the state records are: 
o Process identifier 
o Timestamp 
o Record type (state start / state end, MPI function) 

 
- Information of message interchanges, only for point-to-point operations. Two records are 

generated per message, one when generated and another one when received. The basic 
information of the message records includes: 
o Process identifier 
o Timestamp 
o Record type, or operation (send / receive) 
o Identifier of the “other” node (destination for a send, source for a receive) 
o A message tag 
o Message size 

 
From now on, we will use this way of referencing trace records: SS means State-Start, SE means 
State-End, MS means Message-Send, and MR means Message-Receive. 
 
A trace file can be analyzed using tools such as Jumpshot [ 30], distributed with MPE. Fig. 1 
shows a screenshot of this tool analyzing a CG.W.8 benchmark (Conjugate Gradient with 8 
tasks, class W, included in the well-known NAS Parallel Benchmarks, NPB [ 2]). The legend 
(left) indicates the color codes used in the bars that represent states. Messages are represented by 
arrows. 
 
This way of generating trace files has some limitations. For our purposes, two are the most 
relevant ones. 
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1. Collective operations. This class of operations, that involve synchronization and 
communication among multiple processes, are only represented as states. The trace file 
does not include any record that reflects the way messages are interchanged to implement 
collective operations. For example, in Fig. 1 it is possible to see that an MPI_Send state 
at a given node is related to a message that departs from that node. In contrast, the 
MPI_Barrier states are not related to any message. 

2. States vs. messages. In order to fully understand a point-to-point state, you need to 
consider the information provided in the corresponding state records as well as 
information contained in separate message records. For example, an <n ts1 SS 
MPI_Send> state start record indicates that the node identified as #n tries, at time ts1, to 
send a message, but details about the message are found in a separate <n ts2 MS> 
message send record. 

 

 

 
Fig. 1. Screenshot of Jumpshot visualizing a trace file generated by CG.W.8 

 
Regarding collective operations, they can be implemented in many different ways. Often, the 
implementation is done at the MPI library level, using point-to-point operations to perform 
broadcast, reduce, gather/scatter, etc. This approach is very flexible, because collectives will 
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work on top of any network, and is the one of choice in the case of popular MPI 
implementations, including MPICH. However, some networks provide support for collectives, or 
have topological properties that make some implementations more efficient than others, and the 
generic libraries cannot take advantage of these characteristics. A tailor-made implementation of 
collectives would be much more efficient. For example, [ 1] discusses the implementation of 
collective operations in an MPI library specifically designed for the IBM BlueGene/L system. 
 
In the following subsection we will discuss how to overcome the first of these limitations and 
how, for simulation purposes, the state information can be safely ignored. 

3.2 Generating extended trace files 

We have explained how trace files do not include detailed information about collective 
operations, because the details of how they are implemented are invisible to the application. A 
study of the internals of the MPICH implementation of MPI showed that collectives are, by 
default, carried out using point-to-point messages. The MPICH designers could have chosen to 
use some internal message-passing functions; fortunately for us, they decided instead to use the 
standard MPI point-to-point passing functions. For example, MPI_Broadcast is implemented 
using MPI_Send and MPI_Recv (the most basic message interchange functions), and 
MPI_Barrier is implemented using MPI_Sendrecv (a combination of MPI_Send and MPI_Recv 
in a single operation). The internals of the default implementation of collectives is not accessible 
via the PMPI profiling interface, but this limitation is intentional – and makes sense, because 
other implementations are possible. We have modified the sources of MPICH to change this 
behavior, making the hidden operations visible through the profiling interface. This has no 
consequence in terms of communication semantics. 
 
With the modified MPICH, the generated, extended trace files follow the scheme described 
before, but they are longer because they include more detail. When visualized with Jumpshot, a 
regular trace and an extended trace present different pictures. In Fig. 2 we can see a screenshot of 
a visualization of the extended version of a trace file, which corresponds to the same CG.W.8 
benchmark used in Fig. 1. Note how the green boxes inside the yellow ones represent the way 
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MPI_Barrier is implemented using MPI_Sendrecv, and how messages interchanged in those 
operations are clearly visible.  
 
From this point onwards, when discussing trace files we actually mean extended trace files. 
Regarding the second limitation of normal trace files (information of message interchange spread 
into state and message records), it is still applicable to extended trace files. 
 

 

 
Fig. 2. Screenshot of Jumpshot visualizing an extended trace file generated by CG.W.8. 

4 Using traces to feed simulations 
In this section we describe how trace files can be used to provide realistic communication 
workloads to simulators of interconnection networks. In this discussion, we make these 
assumptions: 
 

- Extended trace files are available. 
- If we simulate a network with n nodes, the trace includes information about exactly n 

communicating processes; that is, there is a one-to-one relationship between application 
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processes and network-attached nodes. For simplicity, we place processes into the nodes 
in consecutive order, that is, process n goes to node n. 

- Simulators deal with the interchange of packets. Applications generate/consume 
messages of variable sizes, which need to be split into fixed or variable-sized packets. We 
discuss message interchanges as if the network delivered them directly, although 
implicitly we are considering message segmentation (into fixed-size packets) at origin, as 
well as message reassembly at destination.  

4.1 First approach: inject as fast as you can 

An initial, and rather unrefined, approach to feeding a simulator with events taken from a trace 
file is as follows: 
 

1. Ignore all the state (SS, SE) and MR records – in other words, use only the MS records 
with information about messages sent. 

2. Split the trace file in one list per simulated node, and arrange the lists in timestamp order. 
3. Make each node inject in the network the messages of its list, as fast as the network 

accepts them. Network backpressure is used to modulate the injection of load into the 
network.  

 
As we can see, timestamps are ignored except to impose an order. The main justification for this 
decision is that we focus on network performance: we want to measure how fast a network can 
deal with a given workload, so we want to stress it, making it our bottleneck. The timing 
information included in a trace file is affected by issues that fall outside our control: the actual 
network used in the instrumented experiment, the processors and their speeds, the MPI 
implementations, the overhead of the instrumentation system, the number of processes that share 
a CPU, etc. We want to isolate the simulation from these facts. If we wanted to carry out 
performance predictions at a system level, we should take into considerations all these issues—
which would make an already complex problem close to unaffordable. 
 
This approach to simulation accurately reproduces, using the information captured in the trace, 
the spatial communication pattern of the application (sources and destinations), and also the 
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message sizes. However, it fails in reproducing the temporal pattern, which should respect 
message causality and reflect the actual way message interchanges are interleaved, as required by 
the application.  

4.2 Second approach: follow causal order 

As we have just stated, the previous approach does not take into account the causal relationships 
between messages. In an actual execution of a parallel application, it often happens that a process 
stalls while waiting for the reception of a new message. Process execution is only resumed when 
the expected message arrives. We may emulate this behavior following this approach: 
 

1. Ignore all state records – in other words, use only MS and MR records. 
2. Split the trace file in one list per simulated node, in timestamp order. Note that each node 

#n has an ordered record list (an “event queue”) of <n timestamp MS destination size> 
and <n timestamp MR origin size> records. In the following steps timestamps are 
ignored, except to order records. 

3. Create, at each node, a reception list, initially empty, that will store messages delivered 
by the network. 

4. At each node, do the following: 
a. If the first record in the event queue is an MS, remove it and inject the 

corresponding message into the network. 
b. If it is an MR record, check if the corresponding message (matching origin, 

destination, tag and size) is in the reception list. If it is there, remove both entries. 
Otherwise, do nothing. 

c. When the simulator delivers a message, put it in the reception list. 
 
This procedure is depicted in Fig. 3. Its main implication is that an MR record puts the injection 
process on hold until the corresponding message is actually received from the network. In the 
figure, node #0 cannot advance, because it is waiting for a message from #1, even if a message 
from #2 has been received already. In contrast, node #1 can advance because the required 
message from #0 has been delivered. This mechanism reproduces the actual way messages were 
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interleaved when running the application, complying with the causal order between a reception 
and the subsequent sends it may trigger. 
 

 
Fig. 3. Interface between the trace file and the network simulator. In the boxes, “MS n” means that a message 

is sent to node #n, and “MR n” means that a message is expected from node #n. 
 
The main drawback of this approach is that it may be excessively conservative. If we look again 
at Fig. 3, we see that the event queue of node #0 says that, after receiving a message from #2, it 
is possible to send a message to #3, and it happens that the message has been received already. 
However, node #0 is stalled (waiting for a message from #1). We may wonder if application 
semantics is adequately emulated. Is it really necessary to receive the message from #1 before 
advancing?  
 
There is not a single answer to this question: it has to be discussed in a case-by-case (application-
by-application) basis. For example, in [ 21] the causal ordering enforced by our simulator is 
considered valid in the context of cc-NUMA machines, because message interchange is reactive: 
a message sent requires a response before allowing the process to advance. However, in general 
terms “The parallel execution semantics, as reflected in the message communication operations 
and how the message data is used, determines process dependencies and message event ordering 
relationships, but only partially. Non-deterministic execution allows for alternative message 
event orderings.” [ 29]. We further discuss this issue in Section  5. 
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4.3 Traces for performance prediction 

In the previous subsections we have stated that timestamp information is used to arrange events 
in temporal (or causal) order, but is otherwise ignored. This decision makes sense if we want to 
study the performance of the interconnection network. However, the network is only part of a 
system. Applications run on a collection of compute nodes, whose behavior is also visible 
through the traces.  
 
How can we use trace-driven simulation to estimate the time needed to run an application? The 
starting point is a real system, in which the application is run and traces are obtained. Those 
traces contain communication events, as can be seen in Fig. 1 and Fig. 2. In the figures we can 
see “empty” spaces between MPI states. These spaces represent the time spent by processes 
outside MPI calls. We can assume that, during that time, the processes are doing useful CPU 
work, although this is not totally accurate. This assumption is only valid if there is a one-to-one 
relationship between process and CPU, and we ignore the side-effects of other activities 
performed by the CPU – otherwise the empty states may correspond to times in which processes 
have been context-switched and do not have access to the CPU. Under these assumptions, a 
simulator can be fed with the traces and a set of parameters that define the CPU characteristics, 
as well as the network characteristics.  
 
The simulator runs as described in Section  4.2 (following causal relationships). Times between 
communication states (between the SE record that corresponds to the end point of an MPI 
operation and the SS record that corresponds to the starting point of the following one) are 
converted into CPU states, with their SS and SE events. In this procedure we could scale the 
duration of these states, to simulate faster or slower CPUs. During the simulation run, when an 
“SS CPU” record for a given node is processed, injections from that node are stopped, and will 
be resumed only after processing the corresponding “SE CPU” event. In other words, the node is 
kept “busy” for the time required by the CPU state.  
 
With this set-up, the simulation takes into consideration the characteristics of the CPUs, as well 
as the characteristics of the interconnection network, to estimate the time required to execute a 
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message-passing application. Any change in the CPUs, or in the network, will be reflected as a 
change in the time required to consume the trace file. 

5 Reproducing application semantics accurately  
5.1 Record order in MPE traces 

A naïve user that analyzes an MPE trace file may think that events are recorded exactly when 
they happen during the application run, and that timestamps are accurate. This is not true, for 
several reasons. An obvious one is that the program file has been instrumented in order to 
generate the trace, so the program is not running as fast as it would do when not instrumented. 
The second reason is more subtle, and to understand it we need to explain how MPI traces are 
generated in the MPE environment. Discussion is also valid for other tracing tools based on 
PMPI. Note that we assume that we deal only with point-to-point operations, because collective 
operations, if present, are also included in terms of the underlying point-to-point primitives that 
implement them. We focus on a subset of the MPI point-to-point operations, in order to discuss 
the relevant characteristics of the way they are logged without messing up with unnecessary 
details. We consider that this subset is still valid, because it includes most (if not all) operations 
necessary to run the applications included in the NPB.  
 
As we explained before, MPE logs are generated using instrumented versions of all the MPI 
functions. An <n ts SS MPI_X> record is generated when a process #n invokes the MPI_X 
function; an <n ts SE MPI_X> record is generated when this function returns. MS and MR 
records (about messages sent/received) are also generated by these instrumented routines, and 
only inside them. Note the implication of this way of working: message send and reception are 
not logged when they happen.  
 

- An MS record is logged after the process has entered into a state in which it request a 
message being sent (MPI_Send, MPI_Isend, MPI_Sendrecv), and before the process exits 
from that state. The message may be injected into the network much later due to different 
reasons: semantic of MPI operations (immediate operations), previous messages queued, 
network congestion, decision of the kernel’s scheduler, etc. 
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- An MR record is logged once the process has entered into a state in which it is actively 
waiting for a message or collection of messages (MPI_Recv, MPI_Wait, MPI_Sendrecv, 
MPI_Waitall), and before the process exits from that state. It may happen that a message 
has been received from the network interface long ago, but this reception is not logged 
until the receiving process has entered a waiting state. 

 
This behavior is clearly visible in Fig. 1 and Fig. 2. Note that MPI_Irecv states can be safely 
ignored, because the actual reception of a message is recorded in a subsequent MPI_Wait; there 
are no arrows arriving to the light-green states. At any rate, when the trace file includes an MR 
record, it is there because the process really needs it to advance. So, in the simulation, it is 
necessary to receive that message before allowing the process to proceed – we will further 
discuss this issue in the following subsection.  
 
The main conclusion here is that application-generated logs are not accurate because they do not 
reflect the exact moments in which messages are actually sent or received. The actual injection 
of a message may have happened later than declared in the trace file, and the actual reception of 
a message may have taken place before the time indicated by the record timestamp – sometimes, 
long before. 

5.2 Receptions from MPI_ANY_SOURCE 

A connoisseur of MPI programming knows that it is possible to indicate a wildcard, instead of a 
source process, in point-to-point receive operations: MPI_Recv(…, 3, …) executed at process #0 
forces this process to pause until a message from #3 is received. In contrast, MPI_Recv(…, 
MPI_ANY_SOURCE, …) pauses the process until a message from any source is received. In 
terms of records in a trace file, the first call and the second one are indistinguishable. Both 
generate three records for process #0: 
 

<0 t0 SS MPI_Recv>  
<0 t1 MR …> 
<0 t2 SE MPI_Recv>  
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The only difference could be in the second record: the first call guarantees that reception is from 
process #3, while the other one may contain any (valid) process identifier. Note that state records 
do not contain any indication of the message source, so from now on we will ignore them. 
 
The programmer may use MPI_ANY_SOURCE just for convenience: it may happen that the 
sender is known beforehand, so that it is not necessary to make it explicit. However, its main 
purpose is to allow processes to wait for messages that could arrive from any source, in such a 
way that the origin of the next useful message cannot be known a-priori. Let us explore this 
issue by means of a simplistic scenario of a master-slave application implemented using three 
application processes. Process #0 is the master, and processes #1 and #2 act as slaves. The 
protocol is as follows. A slave, when free to perform some work, sends a job request to the 
master. Then, the master replies with a task to perform.  
 
A beginner in MPI programmer could program the application as shown in Fig. 4, Version A. 
However, a more experienced programmer would use Version B of the code (Fig. 4, right).  
 

CODE VERSION A: 
… 
do { 
  MPI_Recv(…, 1, …); 
  MPI_Send(…, 1, …); 
  MPI_Recv(…, 2, …); 
  MPI_Send(…, 2, …); 
} while pending_tasks; 
… 

CODE VERSION B: 
… 
do { 
  MPI_Recv(…, MPI_ANY_SOURCE, …, &sender); 
  MPI_Send(…, sender, …); 
} while pending_tasks; 
… 

Fig. 4. Excerpts of sample codes for a master-slave application. 
 
Code Version A forces an unnecessary reception order, which may delay program progress. For 
example it may happen that a message from slave #2 is already buffered, but no one from slave 
#1 has been received yet. Program is stalled in the first sentence of the loop, even when the third 
(reception of a job request from #2) and fourth (sending a task to #2) could be executed without 
risk. This would not happen with Version B of the program, where the utilization of 
MPI_ANY_SOURCE at the reception side would allow process to make progress as soon as 
possible. 
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A trace file generated by Code Version A would always have message records in the same order: 
the one shown in Trace a of Fig. 5. It is easy to understand that a record reflecting that #1 
sends a message to #0 (<1 ts1 MS 0>) must be recorded in trace file somewhere before record 
timestamped ta2; this record would match the one timestamped ta1. In the same way, a record <2 
ts2 MS 0> must be anywhere before record ta4, to match with record ta3. Note, again, that the 
actual reception from node #2 could have happened before the reception from #1, but the trace 
file would not reflect this circumstance.  
 

Trace a: 
… 
<0 ta1 MR 1> 
… 
<0 ta2 MS 1> 
… 
<0 ta3 MR 2> 
… 
<0 ta4 MS 2> 
… 

Trace b: 
… 
<0 tb1 MR 2> 
… 
<0 tb2 MS 2> 
… 
<0 tb3 MR 1> 
… 
<0 tb4 MS 1> 
… 

Trace c: 
… 
<0 tc1 MR 1> 
… 
<0 tc1 MS 1> 
… 
<0 tc2 MR 1> 
… 
<0 tc3 MS 1> 
… 

Trace d: 
… 
<0 td1 MR 2> 
… 
<0 td2 MS 2> 
… 
<0 td3 MR 2> 
… 
<0 td4 MS 2> 
… 

Trace a’: 
… 
<0 ta1 MR ANY> 
… 
<0 ta2 MS 1> 
… 
<0 ta3 MR ANY> 
… 
<0 ta4 MS 2> 
… 

Fig. 5. Excerpts of trace files for Version A (Trace a) and Version B (Traces a, b, c and d) of the master-
slave application. Trace a’ is a modification of Trace a using wildcard receives. 

 
Now, let us suppose we used Code Version B. A sequence of events equal to that generated by 
Version A (probably with different timestamps) would be valid, but Trace b, Trace c and 
Trace d, also shown in Fig. 5, are equally valid. Only one of them would be actually recorded, 
depending on aspects such as workload assigned to those processors, relative CPU speeds, the 
characteristics and status of the network, etc. Let us further suppose that the trace actually 
recorded looks like Trace a.  
 
When doing a simulation we do not want to force that particular order, because it may introduce 
unnecessary delays. We could use wildcard receives, because this information is in the trace file 
(not in the MR records, but in the corresponding state records). After a small manipulation of the 
MR records, Trace a can be modified to look like Trace a’ – with which we feed the 
simulator. Immediately, we must suspend the master process (#0) at event timestamped ta1 while 
waiting for a matching reception. These are two possible scenarios: 
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1. The simulator delivers a message (job request) from slave #1 to the master. This unblocks 
the master, and the simulation continues. The master sends a message (containing a task 
to perform) to slave #1 and blocks again, waiting for a message from slave #2 that, 
eventually, will be delivered. 

2. The simulator delivers a message from slave #2 to the master. This unblocks the master 
and the simulation continues. Then, as directed by the trace, master sends a message to #1 
– something that is not consistent with the event order in the trace file. We interpret this 
as a violation of application’s semantics. 

 
We claim that we should not use wildcards in the trace files, and must stick to the sequence of 
events actually stored. This may not be the only valid sequence of events but, at least, we know 
that this is a semantically valid one.  

6 Experimental work using traces 
First of all, we want to lay emphasis on this point: the purpose of this section is only to illustrate 
the kind of research work that can be done with a trace-driven simulation toolset, such as INSEE. 
We have used this environment to perform many performance studies, published elsewhere. To 
cite some examples, in [ 5] INSEE was used to evaluate the performance impact of using twisted 
wrap-around links in mixed-radix twisted tori; in [ 17] we cross-validated the trace-driven 
simulation with an execution-driven environment based on Simics; and in [ 26] we study the 
performance of a congestion control mechanism, comparing results obtained with synthetic 
workloads with those obtained with traces. 
 
We will use the trace-processing abilities of INSEE to carry out two, very different, example 
performance studies. First we evaluate the impact on performance of different strategies of 
routing and virtual channel management. Then we estimate the time to execute an application 
(Conjugate Gradient) in three different target multicomputers. In the experiments we use a 
network with an 8-ary 2-cube topology – in other words, a 2D torus with 64 nodes. We have 
several trace files that can be used on networks of this size, which were obtained running the 
applications included in the NPB suite [ 2], class W, on 64 nodes of a cluster.  
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6.1 Experimenting with virtual channel management and routing 

Our first example study consists of an evaluation of the effects of using several virtual channels 
per physical link, and the interest of using adaptive routing. Fig. 6 represents the network we 
model, and the details of each router. Each router has 4 bidirectional links (X+, X– , Y+ and Y–), 
each one connecting it to a different, neighboring router. In simple routers each link has 
associated input and output ports, with some buffer space for in transit traffic. However, it is a 
common practice to associate several virtual channels (VC) to each link; each VC manages its 
own buffers. In the figure, there are 3 VC per link – we can see that in detail for link X+, shared 
by virtual channels X+0, X+1, X+2.  
 

 
 

Fig. 6. Left: an 8-ary 2-cube (2D torus with 64 nodes). Right: model of the router simulated by FSIN. 
 
Routers, perform routing decisions in order to make packets advance, from source to destination. 
There are multiple variants of routing algorithms, but we will only consider these: 
 

1. Dimension-order, oblivious routing (DOR). A packet must traverse first as many hops as 
necessary in the X axis (in the row where it was injected) to reach the column where the 
destination is. Then, it has to move in the Y axis (up or down in the column of the 
destination) until reaching the node where it has to be consumed.  
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2. Adaptive routing, using minimal paths. A packet can jump freely from a given VC to any 
other VC, continuing in the same axis (row or column) or switching. However, the jump 
must move the packet closer to the destination.  

 
These two algorithms can lead to undesirable deadlock situations. To avoid these, we use the 
bubble routing mechanism described in [ 22] and used in the IBM BlueGene/L, so that we can 
state that the network is deadlock-free. 
 
Regarding the utilization of several VC, and combining that with the routing algorithms, we 
compare routers built with the following designs: 
 

1. Oblivious 1 VC. A single VC per physical channel. To ensure deadlock-freedom, 
bubble-restricted DOR is used. 

2. Oblivious 3 VC. Three parallel VCs per physical link. Routing is bubble-restricted DOR. 
This arrangement reduces the effects of head-of-line blocking in the transit queues, so 
that when several packets are competing to use the same links they can advance faster. 

3. Adaptive 3 VC. Three VCs per physical link. One of them, the Escape VC, uses bubble-
restricted DOR, and the other two are adaptive. Packets can switch VCs, but access to the 
Escape VC has to follow the bubble restrictions. This arrangement provides the same 
advantage of the previous one. Furthermore, adaptive (but deadlock-free) routing allows 
a more efficient utilization of links, especially when packets have to travel long distances. 

 
We configure FSIN to simulate networks built with these three different routers. TrGen generates 
the workload, using the traces from class W of the NPB applications. The most interesting results 
are those obtained with traces from benchmarks Block-Tridiagonal (BT), Conjugate Gradient 
(CG) and Integer Sort (IS). Traces contain records of message interchanges, which need to be 
“packetized” in small blocks (packets) of 64 bytes. The queues in the routers are configured to 
hold up to 4 of these packets. Bandwidth of the links is 32 bits per cycle. 
 
The simulator reports (among many other things) the number of cycles that the network needs to 
deliver all the applied workload. As each application is different, the numbers differ widely from 
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one to another. For this reason we present in Fig. 7 relative values; the base case (value 1) 
corresponds to the simpler router architecture (Oblivious 1 VC). The figure represents the 
average values of 10 simulation runs, as well as the 99% confidence intervals. 
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Fig. 7. Effects of using 3 VC per physical link, and of adding adaptivity. Results relative to the base case 

(Oblivious 1 VC). Average of 10 simulation runs, and 99% confidence intervals. 
 
From the obtained results, we can find out that, for the traffic pattern used by BT, the utilization 
of several VCs per link does not offer any advantage in terms of performance. However, 
improvements for IS and CG are quite good. For IS, most of the improvement comes from the 
use of several VCs; adaptivity provides minor additional gains. CG benefits less than IS from 
using several VCs, but is capable of taking advantage of adaptivity. The reasons for these results 
have to be found in the different characteristics of the traffic patterns generated by the 
applications. The detailed explanation goes beyond the scope of this paper; however, we can give 
some clues. Local communications neither benefit from using many VCs, nor from adaptivity; 
this explains the behavior of BT. Patterns with intense, non-local interchanges can take 
advantage of many VCs, because it reduces head of line blocking); this explains the behavior of 
IS. Adaptivity is useful when the utilization of network resources is not homogeneous, because it 
helps balancing the workload; this explains why CG improves significantly with adaptivity, and 
why IS does not.  
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6.2 Estimating execution times 

In Subsection  4.3 we described a methodology to estimate the time an application would spend 
when executed in a “target” architecture, different from the one used to capture the traces. As an 
example, we will estimate the time to execute the CG benchmark (class W.64) in three different 
scenarios. The original trace file was generated in the MareNostrum Supercomputer, whose 
interconnection network is a fat-tree implemented with Myrinet-2000 adapters and switches. 
This network operates at 2 Gb/s. The compute nodes are PowerPC 970 at 2.3 GHz. Each MPI 
task runs in a different processor. 
 
The target architectures are three 2D, 8x8 tori, whose network links work respectively at 100 
Mb/s, 1 Gb/s and 10 Gb/s. We use the “Adaptive 3VC” configuration of virtual channels, as 
described in the previous experiment. We have not applied any scale to the CPU times, so these 
target architectures are supposed to use 2.3 GHz PowerPC CPUs. Results of the simulations, 
reporting estimated execution times for these three target architectures, are summarized Table 1, 
along with the actual execution time in the MareNostrum. 
 

Table 1. Actual execution time of CG.W.64 in the MareNostrum, and estimated times for three different 
target architectures. Times in seconds. 

MareNostrum 8x8 torus 
100 Mb/s 

8x8 torus 
1 Gb/s 

8x8 torus 
10 Gb/s 

0.54 3.49 0.55 0.25 
 
We can see how CG, a very communication-intensive application, can take advantage of network 
improvements. The speedup when changing from a 100 Mb/s network to one running at 1 Gb/s is 
6.35; this is because at low speeds most of the execution time is due to communication. The 
improvement when using the 10 Gb/s network, instead of the 1 Gb/s one, is not that great (2.20), 
but still notable; this because at high speeds the execution time is more computation-bound.  
 
Note that results obtained in the MareNostrum are just indicators of the peak performance 
reachable with this machine. In this computer we are not using a 64-node network, but a full 
Myrinet-2000 fat-tree capable of linking the more than 10K nodes of this computer. The 64 
CPUs used in the experiment were not consecutive, but located in different portions of the tree’s 
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leaves. Measurements were taken when the machine was in production, and other applications 
were running (and using the network) at the same time, so some degree of interference was 
present – at least in the network, because the compute nodes were used exclusively by our 
applications. Therefore, it should not look strange that the predictions for our 1 Gb/s network are 
so close to the measurements with the 2 Gb/s Myrinet-2000 network. 

7 Related work 
In the literature we can find many papers discussing different aspects of trace capturing 
mechanisms and utilization of traces for performance evaluation – see for example [ 10]. For the 
specific topic of interconnection networks, Chapters 23 to 25 of [ 7] are of particular interest. In 
addition to performance evaluation and prediction, other common use of traces of parallel 
applications is visualization, often as a help for debugging and detection of bottlenecks. The list 
of references would be very long, because this is a well-established area of work, so we focus on 
the main topics addressed in this paper.   

7.1 Alternative ways of obtaining trace files 

MPE is not the only way of acquiring traces of MPI applications. There are many other options 
available (see [ 14] for a review), but most of them are based on the instrumentation of 
application source code, or on the substitution of standard MPI functions by instrumented 
versions at compile time using the PMPI interface. As they work at the application level, they 
cannot be totally accurate regarding message send / receive times. An alternative way of getting 
traces would be capturing information at a lower level. The operating system, or a set of 
middleware daemons providing services to running MPI applications, should be capable of 
recording the actual timestamps of communication events. This approach would provide better 
timing information. An example of this approach is Sun’s Dtrace [ 19]. 
 
Yet another way of generating a trace file in environments such as networks of workstations 
could be using a network sniffer that captures packet interchanges between computers. A 
programmable sniffer such as Wireshark [ 28] could be used to this purpose. A trace file 
generated this way would contain records with this information: < timestamp, origin, destination, 
data>, with accurate timestamps. However, these tools capture network-level frames, so we do 
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not know whether a burst of packets belongs to the same long message, or are a sequence of 
smaller ones. Also, we know when a packet has been delivered by the network to the receiving 
node, but not when they are actually available to the corresponding application processes. We 
have a temporal order of records, but this is not a causal order, because inter-dependencies are 
not captured. An additional shortcoming of this approach appears when several processes share a 
single computer (a common scenario when we need traces for large systems): as message 
interchange between the processes that share a machine is done internally, the network is not 
used, so we do not have the associated trace records. 

7.2 Extended vs. regular traces 

In Section  3, we discussed the generation of extended trace files, as required by our FSIN 
simulator. It is important to remark that we do not modify the default implementation of 
collectives included in MPICH. These primitives are good for general use, but not optimized for 
any particular underlying communication fabric. Therefore, when we use the extended trace files 
for evaluation purposes, we are testing a target machine with this particular implementation of 
collectives. The availability of this implementation is of great interest for us, because with it we 
can focus on the design and evaluation of the point-to-point abilities of the network. However, 
we know that a good portion of the design effort for a parallel computer should go to the 
supporting library, including an MPI library with customized collectives. A fair assessment of a 
computer with support for collectives should be done using regular trace files. A well-known 
machine with this support is the BlueGene [ 1, 4]. In contrast, clusters built around Myrinet [ 15] 
networks do not include this support – BSC’s MareNostrum is a remarkable example [ 3]. In 
Myricom’s implementations of MPICH (MPICH-GM on top of the older GM library, and 
MPICH-MX on top of the MX library [ 16]) implementation of collectives is not changed, using 
the default one provided in the original MPICH. They plan to include support for collectives in 
future releases of MX. 

7.3 Performance prediction using trace files 

The Dimemas tool, developed at the Technical University of Catalonia [ 8], can be used to carry 
out performance prediction studies using trace files (as well as machine descriptions) as its input. 
Note that the way we model the CPUs within INSEE is utterly simplistic, but the network is 
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simulated with a much high level of detail. The Dimemas approach is the opposite: it accepts 
detailed descriptions of the compute nodes, so that a change in the system architecture is not 
simulated by simply scaling CPU states; however, the network model is very simple: a collection 
of parallel buses. Dimemas uses its own trace format and trace-capturing tools, that gather more 
information than that included in MPE’s CLOG traces – but that require kernel-level support, not 
always available. Trace records include not only MPI operations and communications, but also 
the states of each task. This means that Dimemas traces log when tasks are using CPU, when 
they are blocked by other tasks (when sharing CPU) and when they are stalled for I/O operations. 

7.4 Other simulation tools 

We end this section with a review of simulation tools for interconnection networks. We start with 
SICOSYS [ 20], developed at the University of Cantabria. It performs simulations of switching 
components with a high level of detail, providing timing information similar to that achieved 
using hardware simulators. Its large footprint does not allow it to simulate very large networks, 
but it is extremely useful for on-chip and on-board networks. SICOSYS can be feed with 
synthetic workloads and application traces, and can also be integrated with other tools to perform 
full system simulation.  
 
The Flexim 1.2 simulator [ 27], developed at the University of Southern California, shares many 
design principles with FSIN. A main difference is that Flexim is designed for routers using 
wormhole switching, while FSIN uses virtual cut-through switching. Flexim supports 
synthesized traffic patterns or trace-driven traffic, although no detail of the involved mechanism 
can be found in the documentation. 
 
The Parallel Programming Laboratory at the University of Illinois at Urbana-Champaign 
maintains BigNetSim [ 6]. Its design is very different to INSEE, SICOSYS, or Flexim. It works 
alongside with BigSim, a system emulator able to run applications specifically compiled for it. 
The emulator captures a collection of tasks on a number of processors along with their 
dependencies and writes these tasks to trace files. BigNetSim reads the traces and simulates the 
execution of the original tasks by elapsing time, satisfying dependencies, and spawning 
additional tasks by passing messages through a detailed network contention model. This 
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generates corrected times for each event which can be used to analyze its performance on the 
target machine.  

8 Conclusions 
In this paper we have introduced a collection of tools and techniques necessary to carry out 
evaluations, via simulation, of interconnection networks, using realistic workloads, provided by 
trace files obtained from the execution of actual applications. These techniques have been 
incorporated in the INSEE toolset. 
 
Firstly, we needed to deal with the information contained in the trace files. As regular traces do 
not incorporate the details of collective operations, we modified the trace capturing mechanism. 
Extended trace files allow us to deal only with simple, point-to-point message interchange 
records.  
 
Then, we have pointed out the two main limitations of traces, namely the lack of accuracy in 
timing information, and the fact that a trace file includes only a possible valid outcome (record 
order) of a parallel program execution, but not the only valid one. We have explained that, for 
the evaluation of interconnection networks, we may ignore timing information, but not the causal 
relationship implicit in event order. We know that different orderings in event processing may be 
valid (respecting application semantics), but deciding about whether or not altering the order 
recorded in the trace file requires application-dependent knowledge, and our choice may lead to 
non-valid sequences of events. So the safest approach, for simulation purposes, is to follow, 
without exception, the exact event ordering of the trace file. 
 
The trace processing ability integrated into INSEE offers a very flexible tool to evaluate different 
aspects of interconnection networks for parallel systems. As a way of showing the kind of work 
that can be carried out with this tool, we provide a simple but illustrative example of 
performance study: for some applications, the utilization of multiple virtual circuits per physical 
channel produces important performance gains, which can be even larger if using adaptive 
routing; the study shows the extent of the achievable gains. Additionally, we have shown how to 
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estimate the execution time of an application running in a collection of target architectures using 
traces captured in a real machine.  
 
For future work, we plan to investigate further into how to integrate application semantics into 
simulation, to allow different (but valid) event orderings. Meanwhile, the best way of dealing 
with this issue is the utilization of execution-driven evaluation environments—but only if it is 
powerful enough to allow for the simulation of networks of interest. 
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